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FUNDAMENTAL CONSIDERATIONS OF THE CROSSED BEAM
CORRELATION TECHNIQUE

FOREWORD

The object of this report is to present in one unified
document many of the theoretical concepts which form a founda-
tion to the newly developed "Crossed Beam Correlétion Technique."
It is hoped that the availability of such a document will be
beneficial to those wishing to use this technique in offering
a convenient source of reference.

O0f the many people, both of the TIIT Research Institute
and George C. Marshall Space Flight Center, who have contributed
to this work, the authors have particular pleasure in acknowl-
edging Dr. F. Krause, who has played a major role in the conceptual

developments presented here.



ABSTRACT

The desire and necessity to measure turbulence in regions
inaccessible to standard probes as diverse as the base recircu-
lation region of rocket launch vehicles and in the atmosphere
has led to the development of a number of optical techniques.

One of these, ""The Crossed Beam Correlation Technique'" is the
subject of this report, our object being to summarize the con-
ceptual details on which this method is based.

The "crossed beam correlation technique' avoids the
necessity of inserting solid probes into the flow field. Instead,
two beams of radiation are employed which traverse the entire
flow field in two mutually perpendicular directions. The radia-
tion employed is chosen so that it is either absorbed or scattered
by a flow constituent. Thus, turbulence induced fluétuations of
either the thermo-dynamic properties or concentrations of the
chosen property result in fluctuations in detected light intensity.
Each beam alone reflects only an integral of the fluctuation occur-
ring along its entire path. However, it is shown that cross
correlation of the two detected signals eliminates much of the
integration yielding local turbulent properties instead. Specifi-
cally it is shown that the local value of the intensity of the
fluctuations, the integral scales of turbulence, the convection
speeds, turbulent spectrum and moving axes time scales can be
obtained using this method.

Previously experimental results in subsonic (6) flow have
been published which confirm the theoretical predictions, and are
shown to be in good agreement with previous data obtained from

more conventional techniques.
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It is also shown that the method offers a distinct advan-
tage over probe techniques in the estimation of turbulence
forcing functions, while the hitherto elusive three-dimensional

spectrum function can be obtained from anisotropic flow.
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CHAPTER 1

GENERAL INTRODUCTION

The purpose of this report is to summarize and document
the initial developmental studies performed in the establishment
of the crossed beam correlation technique. At the outset of
this work, in June 1964, it was already obvious that a technique
for the experimental determination of local turbulent properties
of flows around rocket launch vehicles was urgently required.
The statistical properties of these fluctuations are required
as input to a wide range of structural excitation problems as
well as in the prediction of heat, mass and momentum fluxes.
Practical considerations include the analysis of control systems,
structural failures, base heating and the prediction of acoustic
environments in which the vehicle must operate. The measurement
of turbulent fluctuations therefore represents one of the major
problems in the development of launch vehicles (1).

It was also equally obvious that well established techniques
were inadequate for use in the supersonic or hot burning flows
typical of these vehicles. Admittedly the choice was not large.
The hot wire anemometer appears to be virtually the only instru-
ment to find general adoption for this type of measurement.
However, the use of any probe instrument of this type is diffi-
cult in supersonic flows due to the generation of shock waves by
the probe support which are capable of distorting intolerably
the very fluctuations one wishes to measure. In hot burning
flows the temperature environment is usually sufficient to

™,

destroy the probe. v



An awareness of these problems suggests the use of opti-
cal techniques. The major disadvantage of standard optical
methods, such as Schlieren, shadowgraph or interferometry, is
that the measured output depends on an integral of the flow
properties along the entire light path. This must normally
.extend through the entire test section while the technique
required should give information on the local conditions exist-
ing at some point within this test section.

@ Local fluctuation measurements, using an optical tech-
nique, have been made successfully using a viewing technique (2).
The basis of such a technique is to focus the image of a power-
ful light source at the point of interest in the flow. This
image is then viewed at an angle to the optical system producing
it. In this way the detector system collects only that light
which is scattered from the point ,of interest, and the measured
intensity can then be related to the number density of scatter-
ing particles contained in the viewed volume. Since this method
has most in common, with respect to the measured quantities,
with the crossed beam technique, a comparative discussion is
presented later in this report. For a comparative discussion
of other optical methods, the reader is referred to (3).

As we shall see later, the largest single problem associ-
ated with the use of viewing techniques is to ensure that
fluctuations of the detectedllight intensity are truly associated
with changes in the number density of scattering centers within
the viewed volume. This arises due to the fact that light is

also scattered at all points between this position and the



source. Thus, fluctuations of number density at any point
along this path will cause the light available for scattering
at the investigated point to vary. This introduces’' fluctuations
in the scattered radiation detected which is not the result of
local turbulence. 1In principle, a solution to this problem is
offered if the scattering process is very weak so that only a
small percentage of the incident radiation is scattered from
the path of thé incident beam. However, because it is the same
process which is responsible for scattering on this path and at
the point of interest, this reduces the amount scattered into
the detector system to a small percentage of the incident light.
Thus, extremely powerful sources or low noise detectors are
required if small fluctuations are to be reliably detected.
It is reported in (2) that the range of tracer concentration
between that which is sufficient to yield detectable signals
and that which creates erroneous scattering is rather narrow.
These problems are largely overcome using the crossed
beam correlation technique, the principle of which is shown in
Fig. 1. Two collimated beams of radiation are arranged to
intersect at the point to be investigated. The radiation em-
ployed is chosen so that it is partially absorbed or scattered
by a constituent of the flow. Thus, turbulence induced fluctua-
tions of either the thermodynamic properties or concentration
of the chosen constituent are reflected as fluctuations of in-
tensity of the resultant beams. Each beam alone, of course,
reflects only an integral of the flow properties along its
entire path. However, it will be shown in Chapter 2 that cross

correlation of the two resultant beam intensities eliminates
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much of the integration, yielding local turbulent information
instead. 1t is shown that using this method, local estimates
of turbulent intensity, eddy scales, spectra, convection speeds
and eddy lifetimes can be obtained.

Since the inception of this work in June 1964, it has
become apparent that the crossed beam method has a number of
basic advantages to offer when compared with other methods.

In comparison with the viewing technique discussed above, it

is afparent that the use of a tracer is not prerequisite to the
application of the crossed beam method, Suitable choice of the
wavelength, and wavelength interval, of the radiation employed
will permit the required fluctuations of detected light intensity
to be created by absorption due to a species naturally present
in the flow. Further selectivity would also permit a particular
property (i.e., pressure, temperature, or concentration) of that
specie to be chosen for study. We are not aware of another
technique which offers this degree of flexibility. Even in the
event that a tracing method is chosen, and experience has shown
this is often experimentally convenient when it is the kinematic
as opposed to the dynamic properties of the flow which are of
interest, the stringent restrictions on tracer concentration

for the viewing technique no longer apply for the crossed beam
method,

Further, when considering the application of many optical
techniques to turbulence measurement, detector noise problems
will often be an important feature in determining feasibility.

This arises from two requirements. First, to obtain sufficient



spatial (i.e. wave number) resolution of the flow field it is
necessary to limit the field of view of the detector thereby
reducing the amount of light available. Secondly, the electronic
bandpass of the detector must be sufficient to pass all the tur-
bulent information of interest, Thus, while restriction of the
field of view limits the amplitude of the signal to be detected,
the necessary increase of the detector bandpass increases the
noise power generated. This is particularly true in a shot noise
limited case where the noise power is directly proportional to
the electronic bandpass. Although each independent arm of a
crossed beam system is subject to these problems they are largely
eliminated by the subsequent cross correlation procedure. The
basic output of the crossed beam system is the covariance of the
detected signals. Thus in the normal circumstance that the

noise of the two detectors is mutually random, the noise will

not effect the value of the covariance. 1In principle, therefore,
any degree of noise can be tolerated in a crossed beam experi-
ment. In practice, of course, there is a practical limitation
depending on the accuracy to which the required covariance can

be measured. However, experience has shown, and we shall demon-
strate later, that equal power associated with the genuine signal
and the noise is perfectly tolerable in a crossed beam system.
This is in contrast -to the more normal necessity of a ratio of

at least 102 and preferably 104 for many methods. The importance
of this feature is thrown into sharp relief when one considers
the fact that in a shot noise limited situation, a brightness

increase by a factor of 104 in the light source would be required



to obtain the signal to noise ratio of 104 for a single system
over that which would provide the unity signal to noise ratio
required for the crossed beam system.

Turning finally to a comparison of the crossed beam
method with techniques which employ point probes such as the
hot wire anemometer, certain minor differences are apparent.
Primarily, as we shall see below, the technique does not strictly
yeild pointwise information. The measured output yields an in-
tegrél over a correlation area around the beam intersection point.
This factor is perhaps the one primary disadvantage of the method
to the extent that it puts the spatial resolution of the method
beyond the control of the experimenter. However, both our
theoretical considerations and experiments indicate that the
weighting of contributions to this integral is such that a most
acceptable approximation to local values is obtained. Further
theoretical work (4) has indicated that this integrating feature
of the crossed beam system can, in fact, be advantageous. The
statistical properties of turbulent fluctuations required as
input for a broad range of calculations, such as structural
excitation and aerodynamic noise generation, take the form of
either area or volume integrals of space-time correlation
functions. While the exact evaluation of these integrals from
pointwise data is extremely laborious (and often inaccurate),
it is shown in (4) that they can often be obtained from a single
measurement using the crossed beam system or at worst from
relatively few measurements. Finally, in this context it is

also demonstrated in (4) that the integrating feature of this



system will permit the direct measurement of the three dimen-
sional spectrum function as opposed to the one dimensional
function obtained from point probes (5). The use of point
probes has, to date, precluded the estimation of this valuable
function except in the rather academic case of pure isotropic
turbulence where a unique relation exists between the one and
three dimensional spectrum function. Preliminary work indicates
that the ability to measure the three dimensional function in
anisotropic flows may well further our understanding of the
basic structure of turbulent shear flows,

Finally in closing this introduction, it is to be
emphasized that many of the concepts presented apply to situa-
tions in which the direction of the mean flow velocity is
known and the beams of radiation can, to a first approximation,
be placed in a plane perpendicular to that direction. When
this condition does not apply, for example in the atmosphere,
more complicated analyses apply, which are beyond the scope of

this report.






CHAPTER 2
THEORETICAL DEVELOPMENT OF THE CROSSED BEAM METHOD

The basic concept of the crossed-beam correlation tech-
nique can best be described with reference to Fig. 1. A region
of turbulent flow is supposed to be contained within the broken
line, this flow being convected in a direction perpendicular to
the plane of the diagram. Two optical systems are now arranged,
which pass collimated beams of radiation across the flow in two
mutually perpendicular directions so that they intersect at the
point to be investigated. The wavelength of this radiation is
arranged so that it is partially, but not completely, absorbed
by one or more species of the flow. Thus turbulent fluctuations
of the concentration or density of the chosen species will be
reflected in changes of light intensity observed at the detectors.
In common with the, optical methods mentioned previously, each
beam alone reflects only an integral of the appropriate fluctua-
tion along its entire path lengfh. However, as is shown below,
the covariance existing between the signals at the two detectors
does yield local information.

The retrieval of this local information can be explained
intuitively as follows: The instantaneous signal at each detec-
tor represents the sum of all fluctuations occurring along its
path at a particular time. The fluctuations can be categorized
into two groups. first, those fluctuations which occurred suf-
ficiently close to the beam intersection point to introduce a
related (or correlated) fluctuation in both beams. The remainder
which occur at a sufficient distance from this point are uncor-
related and thus introduce unrelated effects on the beam inten-
sities. 1If, subsequently, the covariance (time averaged product)
of the two detected signals is estimated, those pdrtions of the
signal created by the unrelated (uncorrelated) flow fluctuations
will yield an average value of zero. The related or correlated



fluctuations on the other hand yield a finite averaged product.
Thus, the measured covariance is a function only of those fluc-
tuations which occur within the correlated area surrounding the
beamkintersection point. It remains, of course, to demonstrate
that this covariance can be used as a measure of required tur-
bulence parameters.

ANALYTICAL DESCRIPT ION

In order to demonstrate that the covariance of the two
detected fluctuations does, in practice, yield a measure of re-
quizred turbulent properties, it will be convenient to introduce
the following coordinate system. The point of beam intersection
has coordinates (x,y,z) Where the vy and z axes are oriented
along the directions of the beams §;D; and S,D, respectively.
Distances from the point of beam intersection are denoted by
£, N, and £ in the x, y, and z directions, respectively.

Considering first the beam SlDl’ the intensity recorded
at detector D1 at time t can be written

-fK(x,y + "]:Z,t)dﬂ
Ioe

IY(t) = (2.1)

where I denotes the intensity of the initial beam and K is the
appropriate extinction coefficient. The term 'extinction' is
employed here to cover a number of possible methods of achieving
the required beam attenuation. For example, pure absorption by
a flow constituent could be employed, while scattering by particu-
late matter in the flow offers a second possibility. The term
extinction is used here to cover either phenomena or a combina-
tion of both. For a more complete discussion of both the gen-
eralized and special definitions of the extinction coefficient
the reader is referred to {3]. It should also be pointed out
that the value of K will additionally be a function of the wave-
length of the radiation employed. However, since this dependence

does not affect the present discussion, it will not be explicit-
ly shown.
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Whatever the actuaf mechanism of extinction, it should
obviously be chosen so that the value of the coefficient depends
on a required flow property. Thus since in a turbulent flow the
flow properties are a function of both position and time, the
extinction coefficiént will be similarly dependent. Throughout
this report, for the sake of generality, we shall refer to fluc-
tuations of the extinction coefficient. ' However, since these
changes will always reflect fluctuations of a flow property,
statistical properties of the flow will be considered as synony-
mous with statistical properties of the extinction coefficient.

Returning to Eq. (2.1), we can write the instantaneous
extinction coefficient as the sum of its time averaged mean value
{K(x,y + n,2)> and a fluctuation relative to this value
k(x,y + n,2z,t). Then

"f(/K(xay + ‘ﬁ,zf>~dq 'fk(x’y + T]sz,t)dn
e

Iy(t) = Ie (2.2)

If the extinction process is now arranged so that the integral
of the fluctuations, i.e.,

Ik(x,y + n,z,t) dn

is sufficiently small to permit linearization of that portion
of the exponential, Eq. (2.2) can be written

- f<{K(x,y + n,2z) > dn
Iy(t) =1 J. ‘ ~

—.fk(x,y + n,2z,t)dn] (2.3)
It should be made -clear this is not an assumption which restricts
the method to small fluctuations. First, the integral in queé-
tion represents a sum of a number of statisticaliy independent
events, which will tend to reduce its value. Secondly, it is
shown below that if the integral of the fluctuations is of order
or less than 10 percent of the mean integrated value, an optimum
value for the mean attenuation is given by

11



f<x(x,y+n,z)>dn = 1

For this magnitude of fluctuation, the linearization
would be acceptably accurate. In the event that larger fluctu-
ations relative to the mean value are experienced, it would be
both desirable and acceptable to reduce the mean absorption so
that linearization is still possible.

- If the signal at the detector is now written, in turn,
as the sum of its time averaged value {I_> and a fluctuation
iy(t) relative to this value, it is easily shown that

1,(6) = -<Iy>fk(x,y+n,z,t)dn (2.4)

Thus, within the limits of the above discussion, we obtain the
expected result that the fluctuation at the detector is propor-
tional to the instantaneous integral ot the fluctuations along
the entire light path.*

Considering next the beam SZDZ’ a similar result can be
written down by inspection, namely

1,(6) = -1 fk(x,y,2 + £,e)at (2.4a)

If we now take these two fluctuating signals and measure their
time averaged product or covariance, we can define a quantity
G(x,y,i) where
T
G(x,y,z) = -%f iy(t)iz(t)dt (2.5)
0

*In the event that a situation arises in which fluctuations
whicbhb are a high percentage of the mean value are to be mea-
sured and where a weak extinction process is not available, a
result of the form of Eq. (2.4) can be obtained by introduc-
ing a logarithmic response amplifier at the output of the de-
tector i,(t), then representing the output of this additiomal
amplifier.

12



where T denoted a period of integration, which is of sufficient
length to yield a statistically stationary value of G(x,y,z).
Substituting for iy(t)'and iz(t) from Eqgs. (2.4) and (2.4a) re-
spectively and reversing the order of spatial and temporal in-
tegration, Eq. (2.5) can be written

T
6Gr3,2) =CIDCL) 12 [0 kGx,yin,z,0)k(x,y, 24, E)dtdrdn
et o (2.6)

To summarize, taking the fluctuating portions of the two detected
signals and measuring- their covariance, we obtain the result
represented by Eq. (2.6).

SPATIAL RESOLUTION OF COVARIANCES AND MEAN SQUARE VALUES

We can most conveniently understand the significance of
this result by considering initially the temporal integration,
that is,

i ;[T k(x,y + 1,2z,t) k(x,y,z + ¢,t)dt (2.7)
T Y%

alone. This term, clearly represents the covariance ot the
fluctuations at the points (x,y + n,z,t) and (%,y,z + {,t).

If one or both of these points are sufficiently far from the
beam intersection point, the flucutations will be mutually ran-
dom and the resulting covariance will be zero. In fact, only
those points contained within the correlated area around the
beam intersection point will contribute to the measured value

of G(x;y,2z). Thus, although formally the limits of spatial in-
tegration in Eq. (2.6) extend from source to detector, the value
of G(x,y,z) is not changed if these limits are replaced by those
corresponding to the limits of the locally correlated area. In
this way, therefore, the measured quantity reflects only local
turbulent information.

13



Rewriting the covariance in Eq. (2.6) as the product of
the rms intensities at the points considered and a space corre-
lation coefficient R(x,y + 1,z + ), we obtain¥*

G(x,y,2) =
. 1/2

<Iy><Iz>ff K (x,y+1,2,£) K*(x,y,2+L,8)p  R(x,y+n,z+)dtdn
n’t

(2.8)

If the intensity does not vary appreciably over the correlated
area (i.e., the region for which the correlation coefficient is
finite) then the measured quantity, G(x,y,z), is proportional
to this intensity and an area which, by analogy to the familiar
concept of an integral length scale, we shall term the integral
correlation area, i;e.,

G(x,v,z) _ k% (x,y,2) A(x,7,2) (2.8a)
(1541,
where .
A(x,y,z) = ff R(x,y + n,z + ¢) d&dny (2.8Db)
¢

In the more likely event that the intensity of the fluctuations
does vary over the correlated area, the situation does become
somewhat more complicated but, as we shall now proceed to demon-
strate, there are a number of reasons for supposing that Eq.
(2.8a) is still applicable,

Let us define two functions f(n) and g(f) such that

7 1/2 5 . 1/2
k®(x,y+n,2z,t) = k°(x,y,z,t) =~ + £(n) (2.9a)

1/2 ) 1/2
k (X’Y:zat) + g(C) (anb)

and

K* (x,y,2+C,t)

*Qverbars denote time averaged values.
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Basically this involves no more than an expansion of the func-
tional dependence of the rms levels of the fluctuations in Taylor
series around the beam intersection point, f(n) and g(¢) repre-
senting the sum of all terms after the first.

Substituting these expressions into Eq. (2.8) we obtain

G(x 4

2
= k“(x,y,z,t) A(x,y,z)

vl 1/2
+ k" (x,y,2z,t) ff f(n) R(x,y+n,2z+L) dtdn
nvg

v 1/2
+ k(x,y,2,t) ff g(f) R(x,y+tn,z+) dtdn
nveg

+ ff £(n) g(&) R(x,y+n,z+f) didn (2.9c¢)
nve

Comparing this equation with (2.8a) we find that the first term
on the rhs is that which is obtained when no variation of the
rms levels with position is encountered. Thus, the remaining
three terms represent the error incurred due to such spatial
variations. However, the following arguments would indicate
that the magnitude of these terms will normally be small.

Consider first é typical integrand such as
f(n) R(X,Y‘H],Zfl‘&)

The space correlation coefficient, R(x,y+n,z+C) will obtain its
maximum value, unity, for n = { = 0 and will then decrease
progressively as either n or { increases, that is as the points
considered become more remote from each other. Converéély £(),
for example; is clearly equal to zero when n = 0 and in the nor-
mal case would increase with increasing n. Thus as one term of
the product inéreases_the other decreases and the product it-
self tends to remain small, finally approaching zero as the

15



points considered become sufficiently remote that no correla-
tion between the fluctuations exists.

Furthermore, irrespective of the magnitude of the inte-
grands, the probable functional forms of £(n) and R(x,y+n,z+t)
would also suggest that considerable cancellation is to be ex-
pected in performing the subsequent space integrations.

Consider, for example, the second term on the rhs of
Eq. (2.9¢); namely,

kz(x,y,z,t) ,’:[.f(n) R(x,y + n,z +¢) dndt
™

The variation of the space correlation coefficient with n for
a given value of { will be of the general form shown below.

R(x, y+n, z+¢)
£ = Ql
N

Conversely in a flow region where the rms level of the fluctua-
tion is, for example, increasing f£(n) would have the form

f(?i//,

resulting in a variation of the product of the schematic form

16



£(n) R(x,y+n,z+t)

Thus in performing the required integration over all values

of n, considerable cancellation of the area below the axis with
that above it will result and the resulting integral will there-
fore be small,

In fact, in the case that the space correlation coeffi-
cient is an even function and f(n) is an odd function of 7, then
the value of the integral under consideration is precisely zero.
Perhaps the most obviousvcase of such an odd functional depen-
dence would be to assume that the variation of rms level is
linear over the limited range of flow defined by the correla-
tion area. However, it is emphasized that, although such an
assumption would often appear reasdnable, it is over-restrictive
and any odd functional dependence will suffice.

Clearly similar arguments can be applied to the remain-
ing two terms on the rhs of Eq. (2.9c) and these are similarly
expected to be small.

The situation not covered by the foregoing discussion
is that which would occur when the beam intersection point is
close to a turning point (i.e., either a maximum or minimum)
of the rms intensity distribution. In fact, at the turning
point the functional dependence of f(n), for example, would
tend to be even rather than odd as required. Thus, there will
be some tendency to underestimate maxima and overestimate minima.
However, once again it is aﬁticipated that this error will not

be large. Clﬁﬁ% to such a turning point a function such as
k4 (x,y+n,2z,t) will tend to vary comparatively slowly with 7.

17



Thus for small n values, when the space correlation coefficient
is large, f(n) will be small, while at larger 7 values where
f(n) might be more significant, the space correlation coeffi-
cient will in its turn have decreased to small values. Thus,
the values of their product which determine the magnitude of
the "error terms" of Eq. (2.9c) will again tend to be small.

In summary therefore although a variation in the rms
level of the extinction coefficient fluctuations across the
correlated region leads in principle to the rather complicated
situation expressed by Eq. (2.9¢c) it appears in practicé that
only the first term on the rhs of this equation will normally
be of significance. That is, we may write

8Cy.2) = 1P(x,y,z,t) Alx,y,2) (2.8a)
(I,
as a quite general relationship between the measurable quanti-

ties on the lhs and the required local flow properties of the
rhs of this expression.

One further feature of this result also justifies men-
tion at this time. The quantity A(x,y,z) is by definitiom,
Eq. (2.8b), an integral over space correlation coefficients and
thus its value is determined by the scale of the turbulent
fluctuations. Previous measurements, such as tho§e reported
in |11} for example, indicate that the scales of the turbulent
fluctuations are principally a function of position in the
streamwise dire¢tion and are essentially independent ofbposi—
tion in planes perpendicular to that direction. Thus for our
present situation A(x,y,z) is expected to be principally a
function of 'x' and relatively independent of the beam inter-
section point in the given y-z plane.

To this degree of approximation therefore, measurements
of G(z,y,z), <(Iy>r and {I,) are sufficient to yield a rela-
tive intensity profile (i.e., the variation of kz(x,y,z,t))
across a chosen cross section of the flow field.

18



TWO POINT SPACE TIME CORRELATIONS

In order to demonstrate other turbulent properties which,
can be measured using this. technlque, let us consider the result
obtained when one beam is displaced a distance ¢ in the stream-
wise direction, while in addition a time delay, 7, is introduced
between the detected signals prior to estimating their time aver-
aged cross product. This situation is shown schematically in
Fig. 2. Denoting the resulting cross correlation by G(x+t,y,2,7),
the result can be written down by inspection of Eq. (2.6).

G(X"’E;,Y,Z,T) =

T
1
<Iy><Iz>j;]]l;-l-‘j(;k(x,y+n,z,t)k(x+g,y,z+2;,t+*r)dtdCdn (2.10)

The interpretation of any one term within the double space inte-
gral is again straightforward. It represents the space-time
covariance for the points (x,y + 7n,2z) and (x + £,y,z + t) for
the value of time delay v. Therefore finite contributions to
the double space integral will be obtained only from those pairs
of points which experience a common flucutation. These points
will be restricted to a local region around the line of minimum
beam separation, where a fluctuation incident on the upstream
beam subsequently passes through the downstream beam.

Rewriting Eq. (2.10) in a form similar to Eq. (2.8), we
obtain

G(X+€,Y,Z,T) =

<I ><I >ff{k (x,y+'q,z,t)k (x+€,YaZ+C’t) R(X+€,Y+H,Z+C,T)d5dﬂ
yoo g
(2.11)

where R(x+£,y+n,z+f,7) is the appropriate spacektime correlation
coefficient.
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If it is assumed that over the local range of 1 and ¢
for which this correlation coefficient is finite the convective
flow properties are relatively independent of n and . we can
use a separation of variable assumption to obtain

R(x+€ sytn,2+l,7) = R(X,Y‘*'T],Z"'C) r(¢,7) (2.12)

Here r({,7) is the space time correlation coefficient which
would be measured by two point probes located at the points A
and B respectively in Fig. 2. R(x,y+n,z+{) is a weighting fac-
tor which decreases as the value of n or ¢ increases.

Substituting expression (2.12) into Eq. (2.11), the
measured cross correlation becomes

( 1/2
G(xte,y,2,7) = r(¢,7) (I, X< IZ>fj{k2<x,y+n,z,c>k2<x+e,y,z+c,t>}
nve
. R(x,y+n,z+g)dtdny (2.13)
A comparison with Eq. (2.8) indicates that to a useful degree of

approximation r(£,7), the required space time correlation coeffi-
cient is the ratio of two measurable quantities, i.e.,

r(e,r) = SOtby.z,7) (2.14)
G(x,y,2)
If the space time correlation coefficient is measured over a
representative range of both £ and 7 the following properties
of the turbulent flow field can be obtained.

(a) The space correlation coefficient r(£,0) from
~ which the integral scale of turbulence in the
streamwise direction is obtained by integratiomn
over all £&.
(b) The auto-correlation coefficient, r(0,7) which
yields the local turbulent spectrum by Fourier
transformation.
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(c) The velocity of convection obtained from the
time delay at which a particular cross-corre-
lation curve exhibits a maximum value.

(d) The moving axes auto-correlation which is the
envelope of a series of such cross correlation
curves.,

(e) The eddy lifetime, which may be defined as the
time delay for which the moving axes auto-
correlation falls to 1l/e of its initial value.

The remaining parameter which is needed to define the
statistical properties of the turbulent field is, of course, the
integral'tufbulent scale in directions perpendicular to the
mean flow direction. Not only are these important character-
istics of the turbulence, but in addition they are required to
obtain the amplitude.of the extinction coefficient fluctuations
from the measured parameters shown in Eq. (2.9). In principle,-
they could be obtained by re-orienting one beam along the flow
direction and using the method employed for obtaining the stream-
wise scale. However, the problems of locating the source and
detector to obtain such an orientation are formidable in many
flow situations. Thus an alternative method is proposed and
discussed below which eliminates any necessity for beam re-
orientation.

ESTIMATION OF RADIAL TURBULENT SCALES

The method which has been successfully employed for the
estimation of the required radial integral scales of turbulence
can best be explained with the aid of Fig. 1. The plane of the
diagram represents the plane of the flow containing the inter-
secting beams and is perpendicular to the flow direction. It
has been shown previously that the instantaneous fluctuation
(relative to its mean value) of intensity at detector 1 is
given by

i(e) = - <Iy>fk(x,y + 1,z,t) dn (2.4)
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The time averaged mean square values of the fluctuations at
this detector can be most conveniently written in terms of a
dummy variable € in the form

iy (t) = <Iy>2 ff k(x,y+n,z,t) k(x,y+nte,z,t) dedn (2.15)
ne

The integrand, which represents the covariance of the fluctua-
tions at two points on the line of sight of the detector, can
in turn be written in terms of the mean square level of the
fluctuations at the points (x,y+n,z,t) and a space correlation
coefficient.

It is at this point that we must introduce the only new
assumption of this analysis; namely, that the scales of turbu-
lence are independent of radial location in the flow. Evidence
that such an assumption is close to the truth is borne out by
previous measurement in subsonic flows. With such an assertion
the space correlation coefficient introduced above becomes only
a function of the separation of the points considered (i.e.,
values of ¢) and independent of their location. Then Eq. (2.15)
can be written

iyz(t) = <Iy>2f kz(x,y + n,z,é) fR(e) dedn (2.16)
n

€

where R(e) is the space correlation coefficient. But,

Jr R(g) de = Ly

-0

the integral scale of turbulence in the radial direction. Hence

1y (t) = <Iy>2 I..y f kz(x,y + 7n,2,t) dn (2.17)
N
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Comparing this equation with Eq. (2.8a), we obtain

G(x,y,2)  <L> K (x,y,2) Alx,y,2) . 183
1,7(0) (1> I,‘an;k(x’m’z’«t) dn

Up to this point we have regarded the point (x,y,z) as
the 'fixed' beam intersection in Fig. 1, for example, while n
has been used to denote distance from this point. To complete
the evaluation of the integral scale, however, we next need to
consider Eq. (2.18) in terms of a series of intersection points
extending over the complete flow cross section. The 'y' co-
ord&nate of the intersection point thus becomes a variable, and

we write (2.18) as

(1> 6(x,y,2)  AGxy,z) K (x,5,2,t)

<L> iyz(t)

(2.19)

L [ &2 (x,y#n,2,6) dn
Y n

and integrate both sides of this expression over the entire
flow cross section to obtain

~ Z,
<Iy> G(Xay’z) dy = A(X,Y,Z)fk (X,y,z,t)dy(Z.ZO)
<> 1,20 L [ G yn,2,6) an

It should be noted here that the quantities A(x,y,z) and Ly

are written outside the integral sign following our previously
introduced hypothesis that the turbulent scales are independent
of radial location.

However, since the integrals on the rhs of Eq. (2.20)
are functions only of their now identical limits and not of the
variable of integfation, Eq. (2.20) reduces to

1.5 G(x,y,2) A(x,y,2)
f§< > Sy AGy.e) .21
<1,> iyz(t) L,

All quantities on the lhs of the equation are measurable param-
eters, while the rhs is the ratio of an integral correlation
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area to the integral scale of turbulence in the 'y' direction.
It is therefore assumed that this ratio approximates the inte-
gral scale of turbulence in the remaining 'z' direction, i.e.,

<Iy> G(x,y,2)
LZ = f dy (2.22)
(1> 1,2

The definition of A(x,y,z), Eq. (2.8b), shows this to be pre-
cisely true if R(x,y+n,z+{) is a separable function, while our
experiments, under Contract NAS8-20408, have served to confirm
that the use of the method represented by Eq. (2.20) does yield
values of the integral scales which do show agreement with the
expected values. Finally it is to be emphasized that this
method for obtaiﬁing the radial integral turbulent scales does
depend heavily on the assumption that these scales are indepen-
dent of position in the plane containing the intersecting beams.
It is therefore not applicable to situations in which one or
both beams must traverse a number of dissimilar flow regimes.

To summarize, within the limits of the assumptions of
the above analysis, we can obtain the required radial scale of
the turbulence with the following procedure.

1, The beams are intersected at a chosen location
in the flow and the four measurable quantities,
namely the mean values of the beam intensities,
the covariance of the fluctuations, and the
mean square levels of the fluctuations at the
'fixed' 'y' beam are obtained to form the
dimensionless integrand of Eq. (2.22).

2. This is repeated at a representative selection
of points covering the entire flow cross section.

3. The resulting function is integrated, in prac-
tice, numerically to obtain the required scale

LZ.

Obviously the remaining scale, Ly’ can be subsequently
obtained by keeping the vertical beam fixed and varying the
horizontal one.
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SUMMARY

The purpose of the foregoing sections has been to dis-
cugs the basic concepts involved in the optical crossed beam
correlation method. It has been shown that a combination of
absorption measurements with cross correlation analysis can be
used to obtain estimates of local turbulent flow properties.

Equation (2.9) indicates that the measured covariance
is directly proportional to the turbulent intensity at the beam
intersection point. With the assumption that the integral length
scales Ly and L‘z are not strong functionS'of position for a
given ‘cross section of the flow, a relative turbulent intensity
profile can be obtained directly'by measuring this covariance
for a series of beam intersection points. Obviously, the mea-
sured quantity is not strictly a point value, but represents a
weighted average of the intensity over the locally correlated
area. However, a calculation, in which empirical expressions
were developed for the intensity profile and lateral space cor-
relations as measured in a subsonic jet [7], shows that the
weighting is such that the measured quantity follows the true
intensity profile to an accuracy of 5 percent over the entire
cross section of the flow.

To obtain the absolute level of the fluctuations of a
flow property, the product L Lz must necessarily be known, as
well as the relationship between this property and the extinc-
tion coefficient. The latter can cbnveniently be obtained from
static calibration measurements using a standard absorption
cell, while a method for obtaining the radial scales is outlined
above. The remaining kinematic flow properties, namely the in-
tegral scale in the flow direction, the turbulent spectrum, con-
vection velocity, moving axes time scale, or eddy lifetime, can
all be obtained from the space time correlation r(£€,7) which is
given by Eq. (2.14) as the ratio of the measurable quantities.
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r(é’,,'r) - G(X + &:Vang)
G(x,y,2)

Thus, it appears in principle that many of the proper-
ties, which have been previously measured in subsonic flows us-
ing hot-wire anemometer techniques, can now be measured using
the crossed beam correlation method. This method eliminates
the necessity of inserting solid probes into the flow field
thereby permitting measurements to be made over a wider range
of turbulent flows than has been possible in the past.

| It should also be pointed out that the possibility of
chodsing the radiation employed from any portion of the electro-
magnetic spectrum also offers a degree of flexibility not avail-
able with more standard methods. For example, in a multi-
component or reacting flow suitable choice of the wavelength
and'wavelehgth interval of the radiation could be employed to
monitor fluctuations of a particular component of interest.
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CHAPTER 3
OPTICAL INTEGRATION OVER CORRELATION AREAS IN TURBULENT FLOWS

INTRODUCTION

The previous chapter of this report has demonstrated the
way in which the various quantities measured, using a crossed
beam correlation system, can be combined to yield estimates of
pointwise turbulent properties. However, the discussion clearly
indicates that the properties so measured are close estimates
only since, in practice, the technique measures an integral over
the correlation area surrounding the point of interest. Justi-
fication for interpreting the measurements as point properties
is, of course, offered by the fact that normally the correlated
area in question is small compared to the overall flow, and is
reinforced by the fact that the integral is strongly weighted
by contributions generated close to the beam intersection point.
Nevertheless, the .acceptance of these simplifying assumptions is
necessarf ﬁo,such interpretation.

Comﬁonly, however, when attempting to estimate the in-
fluence of a random field, the converse problem arises. Point-
wise measurements of the properties of the field are available,
but some type of space integral of these properties is required
to specify the resulting effect. Let us proceed to demonstrate
this feature in terms of an example chosen primarily for its
well known nature.

THE LOAD ON A FLAT PLATE

Consider the problem of estimating the load on a flat
plate due to a random pressure field. If the plate is located
in the y,z plane and the pressure at any point can be represented
by p(y,z,t) then the load at time t is
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L(t) = ff p(y,z,t) dy dz (3.1)
zv%y

However, since the load is a random function of time, some sta-
tistical representation of its magnitude and other characteris-
tics is normally required. We shall consider its auto-correla-
tion function R(7) since the particular value R(r=0) will yield
the mean square amplitude, while Fourier transformation of the
complete function will yield the spectral distribution. By
definition

R(7) = L(t) L(t+r) (3.2)

which, using (3.1), can be written

R(T) = fyfzfnfc (7,2, )P (5% 2FE;EF7) dndtdydz (3.3)

Let us finally consider the relatively simple situation of re-
quiring only the contribution to this integral of the point
(y,2z) alone. This is

R(y.2,7) = [ [ B350 pOFLEAGERD didt (3.4)
nve

It is apparent therefore that even to estimate the contribution
of ‘the single point to the overall load a knowledge is needed
~of the cross gorrelation existing between it and all other points
on the plate. To obtain the data needed for the exact ‘evalua-
tion of Eq. (3.4) represents a formidable experimental task and
it is common to employ simplifying assumptions which reduce the
amount of data required although it is still considerable. The
situation becomes even more formidable, of course, if the re-
quired function is a volume rather than an area integral. It is
‘the purpose of the subsequent two sections of this report to
demonstrate the way in which a crossed beam system can be used
to measure such functions with relative ease.
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AREA INTEGRALS OF SPACE-TIME CORRELATION FUNCTIONS

Let us start by considering Eq. (2.10) rewritten for
the case £ = 0 in the form

G(x,v,2z,7) _ ff k(x,y,z,t) k(x,y,z+C,t+r) dtdy (3.5)
<Iy><Iz> nv e '

There is obviously a strong functional similarity between this
expression and Eq. (3.4). This functional similafity can be
made exact if it is permissible to assume that the turbulent
field is spatially homogeneous along one of the beam directions.
For the sake of discussion, let this be the 'y' beam. Then,

k(X,Y*'T],Z,t) k(X,Y,Z"'C,t"‘T) = k(X,Y,'Z,t) k(X,Y‘mZ"'C,t'*"") (3~6)

and Eq, (3.5) becomes

G(x,y.2,7) - ff k(x,y,2,t) K(x,y+n,z+C, t+r) dedn (3.7)
(I <1, > J

The rhs of this expression obviously represents the integral of
space time correlation function, existing for time delay 7, be-
tween the point (x,y,z) and all other points within the plane
containing the beams. It is thus exactly the form of expres-
sion which our previous discussion of the loaded plate indi-
cated was required.

Obviously the most questionable portion of our argument
used to tranéform Eq. (3.5) into the required form of Eq. (3.7)
is the assumption of flow homogeneiety along the 'y' beam direc-
tion. However, as discussed by Krause [14], this assumption
is over restrictive and was used above only for the purpose of
clarity.

Let us now consider the more general case in which the
flow is inhomogeneous so that
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k(X:Y‘*'ﬂ,Z, t) k(X,Y, z+C, t+T)

+ K(x,7,2,8) K(X,y-1,2¥C,EF ) + h(n,,7) (3.7a)

where h(n,{,7) is therefore a measure for the inhomogeneity and
is identically equal to zero for the homogeneous case. In sub-
stituting expression (3.7a) into (3.5), we find the error term,
i.e., the difference between the value obtained for the homo-
geneous and inhomogeneous case respectively, is of the form

ff h(n,&,7) dndf (3.7b)
g

Invoking again arguments similar to those employed 4in
the discussion of Eq. (2.8), it would again appear reasonable
to assume that the variation of the inhomogeneity over the
limited flow region for which the covariance is finite follows
a linear trend. Since, by definition, h(n,{,7) is zero for
n =0 h(n,¢,7) will be an odd function of 1 and hence the in-
tegral of expression (3.7b) is equal to zero.

Thus the transformation of Eq. (3.5) into the required
form of Eq. (3.7) is still valid even in the inhomogeneous situ-
ation as long as the degree of inhomogeneity varies either
linearly with translational distance from the beam intersection
point or follows some other 'odd' functional relationship with
respect to n. It is felt that since we need consider the vari-
ation only over the locally correlated area surrounding the
beam intersection point deviations from this requirement will
not be encountered freqﬁently.

Furthermore, it is also important to realize that the
accuracy with which area integrals of cbrrelation functions
can be determined with point probes is not high. Flow disturb-
ance effects will normally preclude the use of a large number
of probes simultaneously. Thus, many repeated runs, using
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pairs of probes, are normally required followed by considerable
numerical integration of results in which errors tend to accumu-
late. Even then, assumptions of local homogeneity are often
necessary to make the number of experiments manageable., By con-
trast, the required area integral is obtained from the crossed
beam method in one experiment, which therefore offers a higher
potentiai accuracy as well as considerable economic savings in
the amount of data to be processed.

Let us next proceed to consideration of the even more
formidable problem of obtaining a volume integrél of the space
time correlation function of the type required in Lighthill's [8]
theory of aerodynamic noise generation. The form of the required
expression might be written

F(x,y,z,T) Efff p(x,y,2,t) p(x+E,y+n,z+f,t+r) dtdndé (3.8)
€Nt

Obviously, such an integral could be generated using the pre-
viously discussed form of the crossed beam system in which

motion of one beam in the £ direction is now employed. Equation
(3.7) becomes

G(xt€,v,2,T)
<Iy><lz>

= ff k(x,y,z,t) k(x+E,y+tn,z+{,t+7) d&dn (3.9)
ubde '

and (3.8) can be generated by repeated experiments for the vari-
ous € values with subsequent integration of the results. Al-
though this meagurement would require several experiments (i.e.,
one for each value of £), the number of measurements is at

least one order of magnitude less than would be required using
point probes.

However, we shall now proceed to demonstrate that, in
-principle, it is also possible to obtain the required volume
integral in one experiment by the combination of a 'thick' and
'thin' beam of radiation.

31



VOLUME INTEGRALS OF SPACE-TIME CORRELATION FUNCTIONS

The experimental arrangement necessary for a 'one shot'
estimate of a volume integral of the space-time correlation
function about the point (x,y,z) is shown schematically in
Fig. 3. A 'thin' beam of radiation similar to those considered
previously is passed across the flow in the 'y' direction from
source S1 to detector Dl'

Thus, as shown previously (Eq. 2.4), the fluctuating
signal at this detector at time t is

ig(e) = <Iy>f k(x,y + 1,2,t) dn (3.10)
n

This beam intersects the second thick beam at the point of in-
terest. This second beam, as shown in Fig. 3, is of appreciable
length in the flow or x-direction emanating from the extended
source S, and being monitored by the detector D,.

Consider first the elemental column of this beam AB,
which is at the position (x+£). Referring again to the argu-
ments used to obtain Eq. (2.4), the contributien_tq the totat \
signal fluctuation at detector D, of this element at time
(t+1) is

1(E,t+r) = I(&)fk(x+&,y,z+c,tﬁ) dt (3.11)
¢

Obviously the total signal fluctuation at detector D, can be
obtained by formal integration over £ and is given by

i,(t+r) = fl(é)fk(x+€,y,z+i,t+7) dtde (3.12)
3 d

_To obtain the required volume integral, it is necessary to im-
pose a weak dependence of the quantity I(£) on position along
the thick beam. With this condition satisfied (3.12) becomes
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]’_z(t+’r) = <Iz> ff k(x+E,y,z+,, t+7) dLdé (3.13)
EJC

where <(Iz>» is the mean level of the signal at detector D2.
If we now cross correlate the output from these two detectors,
we obtain

GI(X’Y3Z’T)

<Iy><Iz>fff k(x,y+n,z,t) k(xt€,y,z+{, t+r)dldndE (3.14)
€-n-¢

Finally, -assuming the 'flow is homogéneous in the 'y' direction

over a typical correlation length, we can use the transforma-

tion demonstrated in’ our previous discussion of area integra-
tion to obtain

G (x,y,2,7) =

<Iy><lz>fff k(x,y,z,t) k(xtf,y+n,z+, t+7) dLdndé  (3.15)
£7n¢

Thus the measurable ratio

G (%,y,2,7)
T 0<L,>

is exactly the volume integral of space time correlation func-
tions expressed in Eq. (3.8) and using the system shown in
Fig. 3 it can be obtained from a single measurement.

It should be noted, however, that to obtain this result
one additional condition over that required for an area integral
is necessary; namely, that the mean intensity received at vari-
ous positions along the extended detector must be constant. If
this condition is not fulfilled; a certain amount of unwanted
weighting of the volume integral by those portions of the flow
where this intensity is high will result (see Eq. 3.12). The
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necessary length of the "broad beam'" is also obviously an impor-
tant feature in determining the extent to which this condition
will be fulfilled. It must necessarily be of sufficient length
that the turbulent pattern which originally passed through the
point (x,y,z) is completely destroyed before it is convected

out of this beam. 1In practice, this would involve a beam length
of order five shear layer widths. Our experiments on supersonic
free shear layer (Contract NAS8-20408) do indicate that in these
flows the change of mean absorption with streamwise position
would be acceptable. In flows where appreciable changes of mean
absorption with position do occur, another solution, in principle,
is to use a weak absorption process. Here the mean intensity

is kept appreciably constant in spite of absorption changes.

Finally, it must be emphasized that no attempts to use
this proposed method for the measurement of volume integrals of
space time correlation functions has been made to date. Thus,
the practical problems of generating the necessary uniform broad
beam or of measuring the required correlations of the two de-
tected signals have not been considered in any detail.

A further effect which requires consideration here is
the influence of scattering of the radiation by particulate
matter in the flow. While this is-allowed for in the extinc-
tion coefficient definition for two thin beams, the possibility
of multiple scattering and its influence on the measurement in
the case of the thick beam proposed here does require further
analysis. The possibility of using a proposed infrared crossed
beam system, in which the longer wavelength would offer some
reduction of the influence of scattering, offers one possible
solution to this latter problem.

MEASUREMENT OF THE THREE DIMENSIONAL WAVE NUMBER SPECTRUM

The previous two sections of this report have demonstrated
the way in which the local integrating features of a crossed beam
system can be employed to generate, very efficiently, two types
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of functions which are of great practical importance in the
applications of turbulence work. We conclude this chapter with
a discussion of the way in which the technique may also be em-
ployed to obtain a very fundamental quantity in the statistical
theory of turbulence; namely, the three dimensional wave number
spectrum. This quantity, as we shall demonstrate below, is very
important in defining the spatial structure of a turbulent flow.
However, its measurement is not possible with point probes, ex-
cept indirectly in isotropic turbulence where the three dimen-
sional function can be calculated from the one dimensional spec-
trum function which is measured by the point probe. However, no
unique relationship, between the measurable one dimensional func-
tion and the required three dimensional function, exists for the
more general class of anisotropic turbulent flows. This diffi-
culty has led to many problems in the interpretation of turbu-
lence data in terms of the spatial sizes of the disturbances
which contribute to the overall turbulent energy.

The problem can be simply characterized as follows. Con-
sider two probes in a turbulent flow as shown in Fig. 4a with
which we desire to measure the streamwise component of the three
’dimensional spectrum function E(KX,O,O), That is, we choose to
regard the flow as comprising of plane waves travelling in the
streamwise direction and we wish to investigate the way in which
the total energy of the turbulence is distributed among the vari-
ous wavelengths. For discussion purposes, we will imagine that
these two probes are capable of selecting energy only from dis-
turbances whose wavelengths correspond to their separation, an
example of which is shown in Fig. 4a. Thus, by using various
separations and measuring the energy per unit time recorded for
each separation, the required wave number spectrum could be ob-
tained. However, consider next the situation shown in Fig. 4b
in which the passage of a cross flow component is registered by
the probes. The probes, having no knowledge that this disturb-
ance is not travelling in the streamwise direction, attribute
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this energy contribution to a wavelength ki’ where, as shown,
the wavelength is in fact A, It is therefore apparent that
cross flow components of wavelength r, will always contribute
energy to the one dimensional spectrum function at a wavelength
AD X

For the case of isotropic turbulence a unique relation-
ship between the one and three dimensional system function does
exist and is given by [9] as

o
E(KX,O,O) = :]: f -lﬁ_; E(x) (/c2 - ICXZ) de (3.16)
Kx K A
It is perhaps interesting to consider, in terms of a simple
example, the way in which interpretation of a wave number spec-
trum becomes confused if only the one dimensional function is
measurable. We consider, in order to use expression (3.16)
above, a hypothetical isotropic turbulent flow in which only
one wave number co&ponent is present. Measurement of the three
dimensional spectrum function would then clearly yield the rather
simple wave number spectrum shown in Fig. 5a. However, using
expression (3.16), it is easily shown that the corresponding
one dimensional spectrum function would take the form shown in
Fig., 5b. Thus blind interpretation of this measurement would
suggest the equi—partition of the turbulent energy in all wave
numbers from the value actually present down to zero. In an
isotropic flow the problem can be resolved, but in practice we
are far more interested in anisotropic flows, where no unique
relationship like (3.16) exists. Thus having measured the one
dimensional spectrufm function, doubt must always remain as to
the extent to which the energy at low wave numbers is contributed
by large scale disturbances travelling in the streamwise direc-
tion and the extent to which it is contributed by relatively
small cross flow components. It is the opinion of this author
and demonstrated by the example cited above that the rather
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complicated picture of the structure of turbulent shear flows
which currently exists may well become considerably simplified
when measurements of the three dimensional spectrum function
become available.

Let us now consider the formal definition of this func-
tion and proceed to demonstrate the way in which it can be
measured using a crossed-beam system.

Following Hinze [10] the function is defined

2 (f
E(sz'cy"a’cz) "'8";,;’3 fff v(x,y,z,t) v (x+E,y+n,z+L,t)

exp [-i(/cx£+/cyn+;czC] dtdndé (3.17)

Considering therefore the distribution of energy among the stream-
wise, Ky s wave numbers this may be written

* =i« £
E(ey:0,0) = —2 fff V(%,y,2,E) VRFE,yi, 2vL,E) e didndt
T '

Comparing the rhs of this expression with (3.9), we find

o

o

4 = -iK <
E(x,,0,0) = -—-31 f G(x+'~nyfz’f 0) ™% g
i £ <Iy>< IZ}

B

(3.19)

JYy

Thus referring to Fig. 2, the required spectrum function can be
obtained by measuring the covariance between the two detected
signals as a function of the streamwise beam separation £,
Standard Fourier transform routines can subsequently he applied
to this function to obtain the required spectrum. Clearly the
evaluation of the single integral involved in (3.19) is far more
practical than evaluation of the triple integral of (3.18) which
would be necessary using local probes and which has precluded
measurement of the three dimensional spectrum function to date.

37



SUMMARY

Qur discussion of Chapter 2 showed that the crossed cor-
relation of optical signals can be employed to obtain useful
estimates of local turbulent properties.

Although there is a strong tendency to attempt to charac-
terize a turbulent field in terms of such local or pointwise
properties, this is not always necessary or desirable. When we
wish to evaluate the effectiveness of a turbulent region as a
forcing function, a considerable amount of integration of point-
wise properties over a correlated region is mormally necessary.
The bulk of information necessary to make such an evaluation
from pointwise determined quantities(is very considerable, and
certain simplifying assumptions are normally introduced to re-
duce it to a manageable amount. The crossed beam correlation
method on the other hand performs a considerable amount of the
required integration automatically and the measured quantities
often resemble very closely the required integrals. Thus, the
evaluation of the effects of regions of turbulence can be per-
formed far more efficiently than would be the case if only point
probe information were availabié.

Finally, the possibility to measure the three dimensional
spectrum function, as opposed to the one dimensional function
available from point probe measurements, will prove a useful
feature in furthering our basic understanding of anisotropic
turbulent shear flows. |
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CHAPTER 4
PRACTICAL CONSIDERATIONS OF THE CROSSED-BEAM METHOD

INTRODUCTION

In the previous two chapters of this report the theoreti-
cal concept and potential capabilities of the crossed-beam method
have been introduced. To avoid confusion these concepts have
been presented for a rather idealized situation. For example,
it has been tacitly assumed that the fluctuations of light in-
tensity generated by the flow are detectable without considera-
tion being given to the conditions for which this is true. No
consideration has been given to the effects of either light
source fluctuations or detector noise, while finally it has
been assumed that the required covariance between the detector
signals can be measured irrespective of its magnitude relative
to, for example, the magnitude of the independent detector sig-
nals. ~Consideration of these more practical aspects of utiliz-
ing the method are the prime consideration of this chapter.

OPTIMIZATION OF THE EXTINCTION COEFFICIENT

Consider the beam 51D passing across the flow as shown
in Fig. 1. It has been assumed that the radiation is such that
it is either absorbed or scattered by a flow constituent, while
fluctuations of the flow properties lead to fluctuations of the
extinction cdefficient and hence detected light intensity.
Clearly two extreme and undesirable situations could exist.
First, if the extinction process is very weak the resultant
signal at the detector will be comprised of a large mean level
on which small fluctuations are superimposed. Alternatively
if the extinction process is extremely powerful, both the mean
and fluctuating signal at the detector will be extremely small.
One hopes that between these two extremes an optimum situation
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exists and the subsequent analysis, in fact, indicates that this
is the case.

Consider Eq. (2.2) and let us define a number n(t) which
is the ratio of the fluctuation of total extinction along the
path to the time averaged value, i.e.,

n(t) = Jk(X’Y'f‘Tl,Z,t)dTL (4.1)
f(K(X,Y'*‘T]:Z) > dn

We can then rewrite (2.2) in the form

- fdx (x,y+1,2) Y dn -n(e) fLr (x,y+1,2) > dn
e e

o]

Iy(t) = I (4.2)

Temporal integration of this equation will show that to a first
degree of approximation '

-f( K(x,y+r;,z).> dy

<Iy> = I (4.3)
Thus Eq. (4.2) cad be written
<I >n(t)
L(t) = <I.) {—X—} (4.4)
y y I
(o}
But by definition
= i .5
Iy(t) ‘(Iy) + 1y(t) (4.5)
Thus the fluctuating signal at the detector iy(t) is
<, 0™ |
- . X - 4.6
e = s L.y (4.6)
o

We wish to determine therefore what value of (I_», if any, will
make the magnitude of i_(t) a maximum for a given level of fluc-

tuation (i.e., value of n(t)).
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Differentiating (4.6) with respect to-<(Iy)> yields

31 (t) (£) + 11<1, ()
-4 = [n 1< -1 (4.7)
3¢ Iy 1 (e

Thus the condition which must be satisfied to yield the largest
fluctuation in detected signal level for a given relative fluc-
tuation of extinction coefficient, n(t), is

—dl =

\Io

C1S 1 1/n(t)
' {—————-} (4.8)

n(t) + 1

It is apparent from this equation that the optimum degree of
mean absorption, <I[ >/I » is dependent on the amplitude of the
fluctuations. Fortunately, however, the dependence is not strong
at least for fluctuations of order 50 percent or less of the
mean value as is shown by Table 1 below.

TABLE 1
7
Value of n(t) 1512>Optimum
I,
0.01 0.370
0.05 0.377
0.1 0.385
0.25 0.409
0.5 0.445
0.75 0.475
1 0,500
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It is of interest to notice here that as the amplitude
of the fluctuations increases it is desirable to decrease the
amount of mean extinction. However, it appears that in the range
in which one would normally be interested (0.01 {n(t) {G(.25) a
value of <Iy>/Io of order 0.37 would be most suitable.. This,
following Eq. (4.3), requires

f(K(x,y + n,z)>dy = 1 (4.9)

It is to be emphasized that the ability to satisfy Eq.
(4.9) is not a prerequisite to the application of the crossed-
beam method:, However, if small fluctuations are anticipated and
an experimentally convenient control of the extinction process
is available, it does provide a guide to the amount of mean light
attenuation for which one should aim.

A choice of the degree of mean extinction is most liable
to arise in two ways. First, if absorption is to be used, the
absorbing species might exhibit a wide range of absorption co-
efficient as a function of optical waveiength of the radiation.
Obviously Eq. (4.9) should be satisfied if in so doing no other
penalties are involved. However, in practice this could involve
working in a wavelength region where light source brightness is
inadequate or it might involve using an extremely narrow wave-
length interval, which would also, in general, involve penalties
of beam intensity. Alternatively use of another wavelength or
wavelength interval might alleviate these problems at the ex-
pense of contravening to some extent Eq. (4.9). In such circum-
stances no general rules for choosing the degree of mean absorp-
tion can be layed down and each experimental situation must be
considered on its own merits. A second situation in which con-
trol of the degree of beam attenuation is available arises when
scattering from particulate matter, artificiélly introduced into
the flow, is employed. Here introduction of sufficient tracer
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can always be used to ensure that the optimum amount of mean
attenuation is obtained. On the other hand, introduction of
'sufficient' tracer might be experimentally inconvenient or
expensive while the higher degree of flow contamination might
influence the flow properties. Once more, therefore, each situ-
ation must be considered on its own merit.

In conclusion, experience has shown that in the experi-
ment design stage Eq. (4.9) is extremely valuable in defining
an optimum situation. However, a wide range of compromise around
the optimum is tolerable and is often experimentally convenient.
To demonstrate this point we present Table 2 in which the mag-
nitude of the fluctuating signal as a function of the degree of
mean extinction is presented for the particular case n(t) = 0.1
(see Eq. 4.6).

TABLE 2

AN 2 .
<Iy/ 1y(t) :]:X_(_t_:_).i J'<(K(x,y+'q,2)>d"il
’IO I, g Iy>
0.0l  0.0037  0.370 4.6
0.05 0.013 0.260 3.0
0.10  0.0206- 0.206 2.3
0.20  0.030 0.150 1.61
0.30  0.034 0.11 1.17
0.40  0.036 0.09 0.92
0.50  0.034 0.068 0.69
0.60  0.030 0.050 0.51
0.70  0.025 0.0357 0.357
0.80  0.018 0.0225 0.222
0.90  0.0095  0.010 0.106
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This table clearly indicates the wide range of extinction co-
efficients which are tolerable and can be used should they prove
experimentally more convenient than the optimum.

EFFECTS OF LIGHT SOURCE FLUCTUATIONS AND DETECTOR NOISE

In Chapter 2 of this report, relationships have been
established between local fluctuations of flow properties and
the covariance of the fluctuations at two independent photo-~
detectors. However, for th¥ sake of brevity and clariﬁy, both
the light sources and detectors have been considered as noise
free. In any practical system, this will not be the case and
it is the purpose of this section to consider the effects of
both light source fluctuations and detector noise on the re-
quired measurements.

Let us first rewrite Eq. (2.1) in a form which allows
for both temporal fluctuations of source intensity and for the
presence of noise in the detector, i.e.,

: ‘fK(X,Y*"fI,Z,t)dﬂ
Iy(t) = Io(t) e + Vny(t) (4.10)

where vny(t) is the noise amplitude in the detector at time t.

Rewriting the source intensity in terms of its time
averaged value Io and a fluctuation relative to the mean io(t)
Eq. (4.10) becomes

-fK (x,y+1,2,t)dn -fK(x,y+n,z,t)dn
o€ + io(t)e + Vny(t)

(4.11)

I () = 1
g (€)

Following essentially similar arguments to those employed to

obtain Eq. (2.4) from Eq. (2.1), a little algebraic manipula-
tion is sufficient to show that the instantaneous fluctuation
at the detector is given by
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Q!

iy(t) = <Iy> k(x,y+n,z,t)dn + ll?io(t)
I
)

<1,
b1 fkGuyne, e an b v € @)

o

It is interesting to identify the source of these four terms.
The first, clearly (see Eq. 2.4a),isfthe required modulation
of the light beam created by the turbulent flow. The second
represents the fluctuations of source intensity after they have
been attenuated by the mean flow. The third represents the
modulation of these fluctuations by the turbulent flow. How-
ever, a brief comparison of this with the first term indicates
it will be small as‘long as the light source fluctuations are
not a large percentage of the mean value. Since this will
generally be the case, it will not be considered further.
Finally, by definition, vny(t), is the noise signal at the
detector.

Thus we can write the resultant signal at the detector
as the sum of three contributions

1(6) = Ve () + v, (8) + v (6) (4.13)

Similarly, for the second detector we obtain

i,(8) = vg, (£) + v, (£) + v (t) (4.14)

where sz(t) represents the required fluctuations created by
the flow, voz(t) iskthe result of the second light source fluc-
tuations attenuated by the flow, and,vnz(t) is the noise signal
from this second detector.

The covariance of the two detected signals, G(x,y,z),
is then given in terms of a total of nine time averaged products
comprising:
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(@) Vg (E)ve, (8) = CI0<T,0 ff k(x,yt,z, 0k(x,y,z+,t)dnd¢
n €

which is the required quantity given in Eq. (2.6).

(b) voy(t)voz(t) which represents the covariance between the
fluctuations at the two sources. This will be zero if
these fluctuations are mutually random.

(c) vny(fjvnz(t) similarly represents the covariance between
the noise signals generated by the two detectors and will
also have a value zero if no correlation exists between

- them,

The subsequent four terms clearly represent the degree of co-
herence existing between fluctuations generated by the flow in
one beam and the light source and detegtor noise fluctuations

of the other system. That such a correlation should exist seems
very unlikely so that these terms similarly fail to contribute
to the value of G(x,y,z).

Finally, the remaining two terms represent the correla-
tion between light source fluctuations on one beam and the noise
signal generated by the detector which monitors the other beam.
Although it is not inconceivable that these fluctuations are
interrelated, the probability is low and hence these terms
similarly leave the value of G(x,y,z) unaffected.

Thus, it becomes clear that the existence of additional
fluctuations (noise) in a crossed beam system, created either
by fluctuations of light source intensity or within the detectors
do not influence the value of the required covariance as long
as they are not correlated.

The most likely source of unwanted correlated fluctua-

tions would appear to be sources (b) and (c) above and their
elimination leads to the following general recommendations:
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1. The two light sources required for a crossed-
beam experiment should be operated from separate
power sources thus eliminating the possibility
that fluctuation of a common power source could
introduce correlated fluctuations in the two
lamp outputs.

2, Similarly, any power sources required for oper-
ation of the photo-detectors should be indepen-
dent of each other.

In practice in any laboratory experiment a potential
source of a common fluctuation is that provided by the elec-
trical mains. It is of the utmost importance in any crossed-
beam experiment to eliminate these effects either at source or
by subsequently removing this frequency from the recorded sig-
nal when this is permissible.

However, once these precautions are maintained it is
an interesting and valuable feature of the crossed beam method
‘that erroneous signals at the two independent detectors in no
way influence the final result; namely, the covariance of these
signals,

In practice, of course, there is an upper limit on the
degree of erroneous noise which can be tolerated. However, as
we shall now proceed to demonstrate, this influences primarily
the statistical accuracy of the results as opposed to leading
to erroneous conclusions. Further, signal to noise ratios
several orders of magnitude lower than those which would be
tolerable in more conventional methods are acceptable.

REQUIRED ACCURACY OF CORRELATION MEASUREMENTS

From previous discussion, it has become clear that the
basic measurement to be performed in any crossed-beam system is
the determination of the cross-correlation function of the two
detector outputs, i.e.,
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T

% J[ 15(E) 1,(c+r) dt

Further, the discussion of the previous section has shown that
the value of this covariance is not influenced by either source
or detector noise as long as these additional fluctuations are
mutually random. Many practical situations will exist for which
this condition is fulfilled, shot noise limited detectors for
example. Under these conditions crossed-beam measurements are,
in principle, possible irrespective of the magnitude of the
noise. In practice, of course, there is a limitation which
arises due to the necessity of using a finite integration time,
T, over which the required correlation is estimated. The effect
of this finite integration period is to leave some uncertainty
in the value of the correlation function. Thus measurements

are possible only if the acceptable integration period is of
sufficient length to reduce this uncertainty to an acceptably
small fraction of the value of the function itself.

To review this problem in a quantitative fashion, it
will be convenient to define the correlation coefficient of the
two detector signals

1 (6) 1,(c+7)
R(T) = }1/2 (4.15)

{iyz(t) i,°(t)

while Bendat [10] has shown that for a period of integration, T,
an uncertainty will exist in the value of R(r) given by

5 = =< where 1<{c V2 (4.16)
vbT

where b is the (radian) bandwidth of the signals.

Bendat's relation (4.16) was, in fact, calculated for
a particular spectral distribution of the signal energy; ngmely,
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b

Ww) = *zf:—gz (4.17)
W

with a corresponding auto-correlation coefficient of the form

e-blT\

R(T) = (4.18)

However, work on the present contract [10] has also considered
a band limited white noise spectrum of the form’

Ww) = 0 0<w<wl
Ww) = 1 wq {w{wy
W(w) = 0 Wy {wdw

It is shown that far this case an uncertainty of the form

5 = V2T (4.19)
Wo=dhy T

results, which is very similar to (4.16).

Let us now consider an artificial type of crossed-beam
experiment shown schematically in Fig. 6. Each cell is imagined
to contain an absorbing species, while fluctuations of the
degree of absorption can also be introduced. These fluctuations
are mutually random in each cell, but are entirely coherent
across a particular cell. Following Eq. (2.4) the fluctuating
signal at detector 1 can be written

il(t) = vml(t) + vmz(t) + ... vmn(t) + ..., va(t) (4.20)
where, for example,

ml

where <(i1)»is the mean intensity at detector 1, kml(t) is the
fluctuation of extinction coefficient in cell (m,1l) at time t
and £ is the width of the cell.
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Similarly, for the second beam we can write

iz(t) = vln(t) + vzn(t) + ... vmn(t) + ... an(t) (4.21)

The correlation coefficient for zero time delay is; from Eq.
(4.15),

T (E) 1,(0)
R(0) = 1 2 (4.22)

{{Zo o)

Since we have assumed that the fluctuatioms in the independent
cells are-uncorrelated

1,(8) 1,(e) = v (&) v () = van(t) (4.23)
1.2(8) = v 2(6) + v, 2 (0) + s F v P(E)  (4.24)
1,2(68) = vy 2(E) + vy 2(E) + .ot + vy 2(E)  (4.25)

If now, purely for reasons of simplicity, we assume that the
mean square level of\ the fluctuatioms in each cell are identical
and equal to v (t) (4.22) becomes

PN
R;(0) = v .1 (4.26)
Nv©(t) N

Thus the correlation coefficient to be measured is the recipro-
"cal of the number of cells through which a single beam passes.

1t is perhaps of interest at this stage to pause to
draw the analogy between this hypothetical experiment and the
more practical situation considered in Chapter 2. By defini-
tion, each cell is a region over which the fluctuations are
coherent and thus is similar to the previous concept of a
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correlation area. Thus the length of a cell is the analogy of
the integral length scale. In fact, consideration of Eq. (2.19)
when the level of the extinction coefficient fluctuations are
assumed independent of position along the beam will indicate
that the correlation coefficient

G(x z

'iyz(t)

is the ratio of the integral scale to flow width or the number
of scales contained in the beam. Further, it is apparent from
the considerations above that the covariance of the signals in
our hypothetical experiment is

1(8) 1,(8) = <I;5CL,> k2 f2 (4.27)
‘which is the counterpart of Eq. (2.9).

Of course in obtaining r;lationship (4.26) the .simplify-
ing assumption that the intensity of the fluctuations is inde-
pendent of position along the beam was introduced. 1In practice,
‘there will normally exist a variation of this parameter. Con-
sideration of Eqs. (4.22), (4.23), and (4.24) in conjunction
with Eq. (4.26) indicates that in regions of high intensity the
correlatioh coefficient will be higher than given by (4.26)
while in regions of low intensity the converse will be true.
However,'Eq..(4.26) in which the value of N is the ratio of
flow width to the integral scale will often yield a useful
estimate of the typical magnitude of the correlation coeffi-
cients to be measured.

Finally, it is now a simple matter to consider the
~effect of additional uncorrelated noise on the magnitude of
the correlation coefficient. We merely add the appropriate
signal power generated by this noise, vﬁz(t , to the rhs of
expressions (4.24) and (4.25).. Eq. (4.26) then becomes
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20
R, (0) = B  (4.28)
Nv7(E) + v_*(t)

which can alternatively be written

R _(0) = [(1/N)e 1 (4.29)
m -—-2—-—-
( ) Va (t)z

sz(t)'

1+

It should be noted here that sz(t)kis the signal power gener-
ated at the detector by the required fluctuationd of flow proper-
ties, while v 2(t) is the noise power. Thus the ratio of the
correlation coefflcient which would be obtained in an ideal
noise free system, Ri(O), to that which would be measured in a

system containing noise, gm(O), would be

Ri(O) n
= 14— (4.30)
R, (0) s |

where n/s is the noise to signal ratio. Thus a signal to noise
ratio of unity would have no moreISerious effect than reducing
the magnitude'of the correlation coefficient by a factor of
two, which would, in normal circumstances make the experiment
marginally more difficult. This is in vivid contrast to the
more normal circumstance in which é signal to noise ratio of
order 104 would be required if the facility to eliminate noise
by correlation were not available.

EFFECTS OF FLOW STRUCTURE AND NOISE ON INTEGRATION TIME

" We have seen above that the principal factor affecting
the typical magnitude of the correlation coefficient is the
number of integral turbulent scales through which the beams
must pass. Erroneous noise generated either by light source
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fluctuations or detector noise will also reduce its magnitude,
but the effect does not become significant until the noise level
approaches that of the signal.

It is extremely difficult to establish those periods of
integration which are needed to perform a crossed-beam experi-
ment in terms of a general class of experiments. This difficulty
arises primarily due to the fact that either a change in turbu-
lent scale or in flow velocity alters the parameter 'b' in
Eq. (4.16), resulting ‘in a change of the integration time, T,
necessary to yield a certain statistical accuracy in the covari-
ance or correlation coefficient.

Alternatively, general criteria can be developed if we
are prepared to work in a spatial, as opposed to temporal,
frame of reference. :If the signal characterized by the corre-
lation function

e-bjTI

R(T) = (4.18)

is generated by the passage of a convected turbulent pattern
through the beams, then the time delay, 7, is equivalent to a
beam separation x where

r o= X (4.31)
C

(o}

Thus the space correlation coefficient is

-bx/U
R(x) = e ¢ (4.32)

and the integral scale is

00

U
Ly =f R(x) dx = ;9- (4.33)
0 _

Further we can define a length, X, which is the product of the
convection speed, Uc, and the integration time T. It thus
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represents the 'length' of flow which passed through the measur-
ing point in time T.

Considering now Eq. (4.16), i.e.,

6 = <
vVbT
we can substitute
U
b = & (4.34)
Lx
and
T = X (4.35)
Uc

so that the uncertainty becomes

L
6 = c\)—?—‘ (4.36)

Thus we obtain the result that the uncertainty in a covariance
estimate is proportional to the square root of the ratio of the
integral scale to the 'length' of the flow which passed through
the measuring point. It is felt that this result is consider-
ably more general than its derivation might suggest. It states
that the uncertainty of the covariénce estimate is inversely
proportional to the square root of the number of statistically
independent events which were measured. This is a well known
result for statistical work in which ensemble, as opposed to
temporal, averages are involved.

Finally it is of interest to combine the results of
Eq. (4.29) with that of Eq. (4.36) above to investigate the
fractional certainty of the covariance estimate (i.e., the
functional dependence of 6/R). We find
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¢! L n
- cV-X y (1+-) (4.37)
Rm(O) X s

Since, for high accuracy of measurement, we require G/Rm(O) to
be small, we can summarize the considerations of the latter
portion of this chapter as follows: To obtain a specified per-
centage accuracy of our covariance estimates, it will be neces-
sary to increase the integration length (and hence integration
time for a given flow speed) if

(a) The integral scale in the flow direction is
large. |

(b) The number of integral scales traversed by the
beam is large.

(c) The power at the detector, generated by a com-
bination of light source fluctuations and
detector noise, is of order or larger than
the power contained in those fluctuations which
are attributable to the flow.

Of these three considerations, both our experimental experience
and Eq. (4.37) suggest that it is criterion (b) which is of
primary conéern.. The existence of many independent fluctuations
along the length of the beams will result in the necessity of
measuring small correlation coefficients thus requiring a high
statistical certainty and hence long integration periods.

STATUS OF CORRELATION MEASURING EQUIPMENT

Although Eq. (4.37) indicates that the availability of
a sufficiently large integration time (i.e., value of X) will
‘permit any required value of the ratio 6/Rm(0) to be obtained
limitations of available measuring instruments are not reflected
in this equation.
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In terms of analog equipment, the present state-of-the-
art permits reliable measurements of correlation coefficients
down to values of order 0.03. Beyond this our present experi-
ence with a Honeywell 9410 time delay correlator indicates that
measurzments are made extremely difficult and tedious due to
drift of the reference levels of the instrument output. In-
crease of integration time required to theoretically improve
the accuracy of the covariance measurement cannot be used here
and thus the basic limitation to measurements in excess of a
few percent appear inherent in such analog equipment.

On the other hand, improvement in the state-of-the-art
of analog correlation equipment are currently being made due to
a widespread and renewed interest in this type of measurement.
It is the opinion of this author that at least an order of mag-
nitude improvement can be expected, probably with the use of
special purpose hybrid systems. It would appear that the basic
multiplications required can probably be performed most effi-
ciently and with acceptable accuracy using analog systems. How-
ever, the more critical integration procedures requiring long
term stability of system components are probably better per-
formed by more reliable digital systems.

An alternative solution, and the one which was adopted
at the outset of this program, is to convert the information to
digital form immediately following the acquisition phase. It
is then possible to utilize the high degree of accuracy and
reliability available on present day digital computers through-
out the necessary data processing procedures.

At the outset of this work the Random Vibration Analysis
program, RAVAN, previously'developed by the Marshall Space
Flight Center was utilized. Although a considerable volume of
data was generated msing this program, it also became apparent
that the rather short integration peribds available with this
program would offer severe limitations in further extensions
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of the work. This limitation arose basically due to the neces-
sity of storing within the computer all data to be processed.
In view of the size of the basic program itself, this was re-
stricted to 2,000 data samples.

This limitation has since been overcome with the develop-
ment of the "Piecewise Cbrrelation Program.' This program has
been developed by personnel of the George C. Marshall Space
Flight Center with consulting services offered by personnel of
the IIT Research Institute as called for by this contract.

The basic mode of operation of this program is as follows:

(2) A relatively short sample of the data to be
processed is read into the computer and the
required eorrelation function is calculated.

(b) A further sample of data is introduced and a
new estimate of the function is obtained.

(¢c) These two estimates are then averaged and
this updated average is compared with the
first estimate.

(d) 1If the updated and previous estimate differ by
more than a certain specified amount, a further
sample is introduced and a further updating of
the estimate is undertaken,

(e) This process is continued until the standard
‘deviation of successive estimates is reduced
to a certain specified value.

This program has the following specific advantages over
the previous program:

(a) The limitation on the length of record which
can be processed is completely removed.

(b) Not only is the final estimate of the corre-
lation function obtained, but in addition an
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estimate of the statistical certainty and hence
significance of the answer is obtained.

(c) Frequent, automatic checking of the statistical
accuracy of the correlation function means that
no more computer time is utilized than that
necessary to obtain the accuracy requested by
the user.

This latter feature is extremely valuable in view of the rela-
tively high cost of computer time.

At this time it is exceedingly difficult to estimate the
ultimate capabilities of this program. The large amount of
ekperimental data which has been processed since its inception
in November 1966 has not permitted the amount of controlled
testing for which one might wish. On the other hand, the re-
sults obtained from the reduction of some two hundred runs of
data. generated under Contract NAS8-20408 were of excellent
quality.

It appears at this time that there are two factors which
set the lower ‘limit of correlation coefficients which may be
measured using this digital analysis method. The first is the
quantization error involved in the analog to digital conversion
routine. Currently, seven bit digital conversion is employed
meaning that the §ignal is assigned to one of one hundred and
twenty-eight discrete levels. In the event that the correlated
portion of the signal is buried within the total signal at a
level less than the quantization step, its presence may go un-
detected and no correlation will result. A second feature,
which results from the necessity of using long integration times
to obtain good statistical accuracy for small correlation co-
efficients, is the basic stationarity of the data itself. These
non-stationarities may result either from drifts in the crossed-
beam apparatus itself (i.e., show changes of light source
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intensity for example) or due to non-stationarities of the
measured process. These latter problems are most likely to
arise in applications where relatively short duration running
is necessitated by air storage limitations. The degree of
limitation imposed by these considerations, however, still
remains to be established and no quantitative values can be
assigned at this time.

SUMMARY

The primary purpose of this Chapter has been to extend
the rather idealistic treatment of the crossed-beam concept
presented in Chapters 2 and 3 to a consideration of the more
practical requirements. These can be summarized as follows:

(a) 1In choosing the extinction process which cre-
ates the required fluctuations of detected
light intensity, a reduction of beam inten-
sity of 60 percent between source and detector
offers an optimum. ﬁowever, a wide range
around the optimum is available.

(b) The presence of light source fluctuations or-
detector noise in a crossed-beam system does
not effect the value of the required correla-
tion function as long as these fluctuations
are mutually random between the two beams.

The practical effects of system noise is to
reduce the value of the correlation coefficient,
thus requiring higher accuracy of the correla-
tion system. In sharp contrast to many other
methods, however, system noise is of serious
practical concern only when its power exceeds
that of the genuine signal.
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(c)

Perhaps the parameter of primary concern in .
establishing the feasibility of a given crossed-
beam application is the number of integral .

- scales of turbulence through which the radia-

tion must pass between the source and detector,
As shown in Eq. (4.26), the '"typical' correla-
tion coefficient is inversely proportional to .
this number. Thus, the presence of a large
number of independent fluctuations along a beam
will require long integration periods and accur-
ate correlation equipment. A review of present-
ly available analog correlation equipment sug-
gests that the lower limit of correlation
coefficients which can be reliabiy determined

is of order 0.05, suggesting an upper limit on
the number of integral scales of order twenty.
Preliminary indications, using digital correla-
tion methods indicate that this limit can be
increased, but the actual limit remains to be
established.
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CHAPTER 5

CONCLUSIONS

The work reported here, together with the experimental
data of (6) , would indicate that the '"Crossed Beam Correlation
Technique'" does provide a new remote sensing method for
the determination of the local properties of turbulent shear
layers. Perhaps the most fundamental advantage of the method
is that measurements can be made without the previous necessity
of disturbing the flow field with the measuring instrument.
Thus, measurements in supersonic and/or hot burning flows be-
come a practical possibility. A second, in principle, advantage
is the inherent flexibility of the method offered by the broad
choice of the wavelength for the radiation employed. It is felt
that future emploitation of this feature will permit investiga-
tions in depth to an extent which has not been possible previously
with the more staﬁdard techniques.

The theoretical concept of the crossed beam correlation
technique was reviewed in detail in Chapter 2 of this report.

It is shown that, within the limits of certain well founded
assumptions, suitable processing of the optical fluctuations
can be employed to obtain local values of the turbulent intens-
ity, integral turbulent scales, the frequency spectrum, convec-
tion velocity and rate of distortion of the turbulent pattern.
The basic assumption involved is that correlated fluctuations
exist only in a local region around the beam intersection

point. It is perhaps an unfortumate feature of the method that
the necessity to invoke this assumption puts the spatial resolu-

tion, in the plane containing the crossed beams, beyond the
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control of the experimenter. It is controlled by the flow
field. On the other hand the stronger correlation existing
between adjacent fluctuations offers a powerful weighting of
fluctuations occurring in the immediate vicinity of the beam
intersection point. Both our theoretical considerations and
measurements of convection speed profiles (particularly those
in supersonic flows indicate that a more than practically
acceptable degree of spatial resolution is obtainable. Present
results suggest that at least ten spatially resolved values of
convection speed can be obtained across a single shear layer.
Not only is this more than adequate for practical applications,
but experience with point probes would suggest that at this
degree of resolution the basic accuracy of statistical measure-
ments might begin to set the resolution rather than a fundamental
limitation of the crossed beam technique itself.

In contrast to resolution in the plane containing the
crossed beams, the resolution in the remaining streamwise direc-
tion is controllable. It is set by the diameters of the beams,
which is in turn a function of the fields of view of the
detectors. To date measurements have been performed using
diameters of order 1 mm, which appear more than adequate for
the model flows investigated. 1In the event that even smaller
models were employed or if a very finme turbulent structure were
anticipated, beam diameter reduction would be desirable. The
ultimate limit in this respect is set, in practice, by the
brightness of the available light source, the magnitude of the

optical fluctuations expected and diffraction phenomena. No
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general rules can be set down and it is felt that each situation
must be reviewed on its own merits.

With regard to temporal resolution this is relatively
unlimited with regard to detection problems, due to the very
high frequency response available with present photo-detectors.
The limitation in this respect is more likely to arise in data
storage where it is necessary to store the signal from two
independent photo-detectors without destroying their phase
relationship. A currently available multiplex tape recorder
system is capable of storing data,with‘negligible relative
phase distortion at frequencies up to 50 Ke/s. Previous experi-
ments on a 2.15 in. diameter Mach 3.4 nozzle have indicated
that maximum frequencies of interest are around 10-20 Kc/s.
Thus, no limitations of temporal resolution are to be antici-
pated unless very small model flows were to be investigated,
which would reduce the turbulent scales hence increasing fre-
quency requirements. However, this limitation will apply
irrespective of the measuring technique employed.

Chapter 3 of this report reviews the theory of the
crossed beam technique with particular emphasis on the applica-
tion of turbulence measurements to the estimation of the effects
of the turbulent field on the local environment, the usual prac-
tical problem. It is shown that while the optical integration
over the correlated region necessitated some assumptions to
regain pointwise information, this integration is, in fact,
advantageous here. The normal crossed beam measurement gener-

ates an area integral of the turbulent forcing function, while
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it is also demonstrated that the combination of a 'thick' and
'thin' beam can in principle be used to generate a volume
integral. It is emphasized however that the practical problems
involved in the latter have not been given any detailed consid-
eration to date. However, it does appear that, while the estima-
tion of turbulent forcing functions from point probe information
necessitates large numbers of experiments and subsequent numer-
ical integration of data, these functions can in principle be
generated rather efficiently using the inherent integrating
properties of the crossed beam method.

One further feature of the crossed beam method which
justifies mention here is its ability to measure directly a
very important and fundamental parameter of a turbulent field,
the three-~-dimensional wave number spectrum. Direct measure-
ment of this function has not been possible previously using
conventional methods, while it is only in the singular case of
isotropic turbulence that it can even be calculated from the
measurable one-dimensional spectrum function. It is felt that
subsequent comprehensive comparison of the one-dimensional
function, obtained from hot wire measurements, with the three-
dimensional function obtainable from the crossed beam method,
will yield a great deal of insight into the structure and
mechanisms which exist in turbulent shear layers.

Although up until this point this report has been
principally concerned with the theoretical foundations of the
crossed beam method, it would be unfair to end without a brief

discussion of the difficulties involved in initially generating
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interpretable fluctuating signals at the two independent photo-
detectors. At the inception of our work, radiation from the
vacuum ultra-violet region of the spectrum (circa 18502) was
chosen. This spectral region is attractive, due to the fact
that the required fluctuations are generated by the naturally
present oxygen content of air driven facilities. However, it

is felt that a brightness increase in available sources by a
factor of at least one hundred is desirable for general detailed
application. Even then the use of this spectral region involves
a complex optical system. The necessity for special light
sources, an evacuated optical system, precise monochromators

and special optical windows are all complications which can be
avoided by the use of visible radiation in conjunction with
tracer techniques,

In considering suitable tracer materials there is little
doubt that gaseous materials are to be preferred. Unfortunately
all gases which absorb visible radiation are toxic and were
therefore precluded for this work. Subsequent studies indicated
a preference for solid tracer materials and it has been shown
that aerosol particles of the correct size range (~0.5 microns)
do offer a remarkably effective tracing method, concentration
of order 1 part in 106 by volume or less being suitable for
most applications. The major problems which arise here is the
dissemination of sufficient tracer material in the required size
range. Pretracing of the air storage supply is to be preferred
since this allows maximum time for tracer dissemination. The
injection of micron sized teflon particles initially suspended

in liquid freon has been employed successfully. A study of metal
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oxide smokes also indicated these did offer a tracer of the
desired size range, but a closer definition of the potential
abrasion hazards of these materials is required.

Future consideration for alternative tracing methods
should involve the employment of non-toxic gases in conjunction
with infrared radiation. Carbon dioxide, either the natural
air content or with artificial additions currently appears
attractive. Unfortunately once again a move away from visible
radiation will involve extra complications of the optical system.
Finally, it should be mentioned that the use of the colored,
toxic gases should not be overlooked although special precautions
to contain the toxicity hazards will be necessary.

In spite of these difficulties, initial application of
the crossed beam method involving the measurements in subsonic
jet flows which are discussed in (6) are regarded as highly
successful. The required degree of spatial resolution appears
to have been obtained, while the close agreement with independent

hot-wire investigations is very reassuring.

66



SUMMARY

Combining the theoretical work presented here with the
experimental results of (6) , it is submitted that the "Crossed
-Beam Correlation Technique" ‘does offer a viable method
for the determination of local properties of turbulent shear
layers, while avoiding the necessity of disturbing the flow by
the presence of an instrument.

Experimental studies indicate that a more than acceptable
degree of spatial resolution is obtained, while temporal resolu-
tion is comparatively unlimited to the extent that currently
available photo-detectors offer a frequency response far greater
than is needed.

Advantages of the technique over more conventional methods
involve far more direct estimates of turbulent forcing function
and the capability of measuring the three-dimensional spectrum
function.

From the practical viewpoint, it appears at present that
future application of vacuum ultraviolet radiation to detect
thermodynamic property changes in air flow would be considerably
enhanced by the availability of brighter light sources although
the method has been employed successfully . The use of
solid tracers with visible radiation does offer a practical
method of application, but gaseous tracers would be preferable.
Carbon dioxide with infrared radiation should be explored as a
possible method, while gases which absorb visible radiation
would be preferable if protection from the attendant toxicity

hazards can be provided.
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